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The motion induced by sources and sinks distributed along the vertical side wall 
of a cylinder filled with fluid and rotating about a vertical axis is considered. 
Vertical motion, and hence vertical transport, is confined to a vertical boundary 
layer of thickness Ei, where E is the Ekmannumber. The horizontal transport 
occurs through the interior of the fluid. The Ekman layers do not play any active 
role in the transport process. The results of a very simple experiment confirm 
these conclusions. 

1. Introduction 
In  the present paper we shall consider the flow induced by radially injecting 

and withdrawing fluid through the vertical side wall of a cylinder filled with 
viscous, incompressible fluid. The top and bottom walls of the cylinder are 
assumed to be rigid and the cylinder is rotating about a vertical axis with constant 
angular velocity. Without loss of generality, we can, for instance, consider that 
fluid is injected a t  one point located a t  a certain height and longitude and that it is 
withdrawn at another point locatedat a different height andlongitude (see figure 1, 
plate 1). Because of the Taylor-Proudman theorem, we can anticipate that 
vertical motions will take place within a thin boundary layer girdling the cylinder, 
of the type first discussed by Stewartson (1957), and that therefore the vertical 
transport will be effected through this boundary layer. It is, however, not clear 
a priori how the horizontal transport will be achieved, i.e. whether it will also 
occur through this vertical boundary layer, or by means of motions in the interior 
of the fluid, or still by some devious way via the Ekman layers present at the top 
and bottom boundaries as in the case of the similar though not identical problems 
considered by Lewellen (1965) and Hide (1967). This question, which we pro- 
pose to answer, is of some relevance in many geophysical problems stemming 
from models of atmospheric and oceanic currents driven by such source-sink 
distributions. 

2. Formulation 
The equations of motion for a viscous, incompressible fluid, written in a frame 

fixed with respect to the cylindrical container which rotates with angular velocity 
i2 about the vertical, are: 

v’ . V’v’ + 2i2k x v’ +p-V‘P‘ - _12Q2V’) k x r‘l2- vVt2v ’ = 0, (2.1) 

(2 .2 )  V’ . v‘ = 0. 
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Denoting by Q the (volume) flux of fluid entering the side wall and by H the 
height of the cylinder, we introduce dimensionless variables as follows : 

r' = H r ,  ' Q  v = - v  
H 2  ' 

Substituting these expressions in (2.1), ( 2 . 2 )  we can write 

s(v.V)v+Zkxv = -Vp+-EV2v, 

v .v  = 0, 
where B = Q / Q H 3  
and E = v / Q H 2  

(2.3) 

are respectively the Rossby and Ekman numbers. We shall restrict our analysis 
to the case of small B (i.e. small mass flux) and neglect the non-linear terms. The 
boundary-value problem which we propose to solve is therefore 

2kxv = -Vp+EV2v, \ 

I v . v  = 0, 

v = I(x,  6)n on r = R, 
(3.8) 

v =  o on z = 0 , 1 ,  I 
where n is the outer normal, R the dimensionless radius of the cylinder and I ( z ,  8 )  
is an arbitrary function of z and 6 which specifies the injection velocity and which 
is such that no net mass flux enters the cylinder, i.e. 

lo2" d 6 I O 1  I (2 ,  0) dz = 0. 

In  the remainder of the paper, we shall never have to rely explicitly on the fact 
that the cross-section of the cylinder is circular. Actually, the choice of this cross- 
section is made purely for the sake of the simplicity since the procedure to be 
followed is valid for a cylinder of arbitrary cross-section, the only difference 
residing in the use of the 'natural' co-ordinates of the surface instead of the 
cylindrical ones. 

3. Solution 
The actual solution of the boundary-value problem (2.8) is quite straight- 

forward but will contain lengthy expressions for various representations of the 
velocity field valid in different regions of the fluid. To prevent some of the argu- 
ments from being obscured by the inevitable algebra we shall first outline the 
basic steps to be followed, stating the results which we shall subsequently prove. 

Using boundary-layer concepts, three distinct regions will emerge from the 
analysis: the top and bottom horizontal Ekman layers of thickness Eg, the side 
wall boundary layer made up by an inner layer of thickness E3 and by an outer 
layer of thickness Ef, and finally the interior region. Using a procedure by now 
standard, we shall only consider the flow outside the Ekman layers which can be 
adequately accounted for by appropriate boundary conditions on the vertical 
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velocity of the overlying or underlying field. Mathematically, this will enable us 
to reduce the order of the z-differentiation and in particular to treat the Laplacian 
occurring in (2.8) as if i t  were the two-dimensional horizontal one. These modified 
boundary conditions will also enable us to show that the interior flow is irrota- 
tional. We shall then turn to an investigation of the flow in the vicinity of the side 
wall. Denoting by a tilde the E# layer fields, by a bar the Ei layer fields, by 
capitals the interior fields, and writing the E-dependence of these fields explicitly, 
we find that the side wall boundary conditions can be written as: 

Ea+h + ENS4 + E c U  = T(z, 0) + Y(0), (3.1) 

Ea;il+Ebv"+EcV = 0, (3.2) 

Ea+!cw+EbG = 0, (3.3) 

where ZC, G, U ,  etc. ... are O(1). 9(0) is defined as the x-average of I ,  viz. 

and q z ,  8)  = I ( Z ,  8 )  -Y(0). 

In  order to deduce the values of a, b, c (i.e. the magnitude of the various fields) we 
shall make use of the following three properties: (i) the interior fields are indepen- 
dent of z ;  (ii) 5 and 3 are also independent of z, while W has a linear z-dependence; 
(iii) only 4, v" and 63 have a large degree of functional arbitrariness in their z- 
dependence, although the z-average of G and v" is zero. Once these properties have 
been derived, we shall immediately be able to deduce that b = - ij and that the 
boundary conditions for the ES layer fields are 

4 = f ( x , O ) ,  6 = 0, G = 0. (3.6) 

We shall also show that a = 0 and c = 0, i.e. that 

U ( R , 0 )  = .a(@ 
and v = - V(R,0 ) .  

Using the appropriate equations together with the boundary conditions (3.6), 
(3.7) and (3.8) we shall then solve three boundary-value problems for the E* 
layer, the interior and the E* layer respectively. 

Let us now proceed with the actual solution. Taking advantage of the smallness 
of E we expand the pressure and velocity in powers of EA. The choice of this 
exponent is suggested by the results obtained by Robinson (1959) and Greenspan 
& Howard (1963), who considered Stewartson-type vertical shear layers girdling 
rigid walls. Formally, we can therefore write 

The factor Ec, where c is an unknown constant,, is introduced to allow for the 
possibility that the first non-zero term is not of order one. Substituting in (2.8), 
we deduce the interior equations, viz. 

2kx Vo = -VPo, (3.10) 

c.vo = 0. (3.11) 
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Note thttt Vi, Pi satisfy the same set of equations for i = 1,2,  . . . , 11. Taking the 
curl of (3.10) we get the Taylor-Proudman theorem, namely 

avolax = 0, (3.12) 

which states that the interior velocity is independent of z (property (i)). In 
addition to the Taylor-Proudman theorem, (3.10) shows that the horizontal 
velocity is geostrophic (i.e. isobars coincide with streamlines). The fact that the 
pressure can be considered as a stream function for the horizontal velocity can 
be seen by taking the cross-product of (3.10) by k: 

Vo-(k.Vo)k= -+Vx(kPo).  (3.13) 

We shall make use of this well-known result later on. 
In  order to satisfy the inviscid and no-slip boundary conditions at the top and 

bottom boundaries, we must add boundary-layer corrections to the interior 
velocity V,. The equations governing these boundary-layer corrections are the 
usual Ekman boundary-layer ones, which, because of their simplicity, can be 
completely solved without a knowledge of the underlying or overlying fields. 
This very convenient property has been used to derive appropriate boundary 
conditions for the overlying or underlying fields, viz. 

(3.14) 

where 6 = k.V x v is the vertical component of the vorticity. nTe shall not re- 
produce the derivation of (3.14) which can be found in Charney & Eliassen (1949) , 
Greenspan & Howard (1963)) Barcilon (1964)) Jacobs (1964)) among others. An 
improved approximation which would be necessary if we were to carry the formal 
expansion in E A  beyond O(EB) is given below: 

} (3.15) 
w = &E+(w2- 5 )  +&EW2(wZ- 35) + O(E2) at z = 1, 

w = -+EB(zu, -~) -&E%V2(w2-3~)+O(E2)  a t  x = 0. 

It should be noted that these boundary conditions can be used not only for the 
interior fields, but also for the side wall boundary layer. Applying (3.14) to  the 
interior field, we immediately deduce that 

w0 = 0, Q x Vo = 0 ;  (3.16) 

i.e. the interior flow is two-dimensional and irrotational. A repeated use of (3.15) 
would show that these features of the interior flow hold to much higher order 
than o (Eh) .  From (3.16) and (3.13) we deduce that 

V2P0 = 0,  (3.17) 

where V2 is the two-dimensional horizontal Laplacian operator. To obtain a 
closed boundary-value problem for the interior, we must derive the appropriate 
boundary condition for Po at the vertical wall of the cylinder, which in turn 
requires that we consider the side wall boundary layer. 

Vertical shear layers of this type were first considered by Stewartson (1957) 
for the case in which they are detached (or free), then by Robinson (1959) and 
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Greenspan & Howard (1963) for the case in which they are hugging a rigid wall. 
In  all these investigations the flow was axially symmetric and these boundary 
layers had no azimuthal dependence. A free shear layer of this type which had 
an azimuthal dependence was first investigated by Jacobs (1964) in connexion 
with the Taylor column problem. In  the present analysis, we are also concerned 
with an azimuthally dependent boundary layer, but since it hugs a rigid wall we 
cannot use Jacobs's results. Whether detached or not, the boundary-layer equa- 
tions are identical, viz. 

I azt i av aw 
ar Rae az 
-+--+- = 0. 

(3.18) 

Let us first consider the E i  part of this boundary layer. On introducing the 

p = (R-r)E-%, (3.19) 
stretched co-ordinate 

and omitting some simple calculations, we can see that the boundary-layer fields 
must be scaled thus: 

(3.20) I u = Eb+*iZ(p, 0, z), 
2, = E%(p, 0, z) ,  

w = EbG(p, 0, z), 

where .ii, v" and 8 are of O( 1) and satisfy the following equations: 

(3.21) 

On substituting (3.20) in (3.14), we see that the boundary condition for G is 

G = O  at z = O , l .  

Let us therefore look for solutions of (3.21) of the form (property (iii)): 
m m  

n=O k=l 
iZ = x x e+P [a,, cos n0 + tikk sin no] COB h z ,  

v" = x 2 e-hkp {fink cos n0 + v"hk sin no] cos knz, 

G = 2 e-hkp [Gnk cos ne + GLk sin no] sin knz. 

w o o  

n=O k=l 

m c o  

n=O k=l 

Substituting (3.23)-(3.25) in (3.21) we get 

- knv",,, = *hEank, knr8,k = - gh$v"n',,, 
(nlR) Cn, + knGmk = - A,Gnk, 

and - h @ A k  = &#h$$Ak, k7lC)& = - +Aiv",,!,k,) 
- (n/R) Cnk + kT@& = - A  k %' nk' 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

Recalling that Re ( h k )  must be positive, we can see that there are three roots for 

(2k77)4, (2kn)*(++i4 43)) (2kn)3(4-i4 43). (3.28) A,, viz. 
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With a third index running from 1 to 3 to indicate which value of A, is being 
used, we can write: 

and 

where 

(3.29) 

(3.31) 

and PI, = (2kn)%. (3.32) 

We postpone the determination of the Glnk's and Gink's until we determine the 
appropriate boundary conditions, and proceed with the investigation of the Ea 
part of the layer. We define the stretched co-ordinate 7 as follows: 

7 = ( R - r )  E-k. (3.33) 

Again omitting some simple calculations, we can see that the boundary-layer 
fields must be scaled thus: 

u = E&E, v = EaE, w = Ea+kW, (3.34) 

ujZ = iVv71v,  V, = 0,  - Ev + (1/R) = 0. (3.35) 

where ;ii, V and W are of O( 1) and satisfy the following equations: 
- 

From (3.35)) we can immediately see that Ti and V are independent of z and that 
W is a linear function of z (property (ii)). The boundary conditions (3.14) imply 
that 

On solving for U, V and W we get 

V=Aexp(-J2q),  
W = - @A(z-  4) exp ( -  , /27), 

(3.36) 

i (3.37) 

where A is an unknown function of 8. 
We have deduced all the properties of the interior and side wall boundary layer 

which were stated a t  the beginning of this paragraph. Let us now return to the 
boundary conditions which canindeed be written as in (3.1)-(3.3). The conclusion 
that b = - Q and that boundary conditions for the E i  layer fields are indeed those 
given in (3.4) is straightforward. 

Ifwe assume that a = - and c > 0, i.e. that 9(@) 'excites' the Ek layer rather 
than the interior, then (3.2) requires that V vanish on the wall, or, using the ex- 
pression for V given in (3.37), that A = 0, which entails that Z, V and W are identi- 
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cally zero. The same contradiction would be reached if we assume that a = $ and 
c = 0. The only possibility left would be to take a = 0 and c = 0, which implies 
that (3.7) and (3.8) are the correct boundary conditions for the interior and Et 
layer fields. Physically this implies that the horizontal transport occurs via the 
interior and not via the side wall boundary layer. Furthermore, since c = 0, the 
horizontal transport via the Ekman layers is at  most of O(E4). 

Having determined a, b and c and the appropriate boundary conditions for the 
Ef layer, E* layer and interior fields, we can complete the solution. Expanding 
in a double Fourier series, viz. 

m m  

n=O k = l  
I(z, e )  = c c [Ink cos n8 + I;,< sin no] cos knz, (3.38) 

and using (3.6), (3.29) and (3.30), we can write 

“ “ 2  
.ii = I: - exp ( - $,8kP) sin (+ 2 /3 ,8kP  + +n) cos knz (Ink cos n8 + IAk sin no), 

(3.39) 
n = O k = l $  

Y 

6 = C - Enk exp ( - i p k p )  sin (8  J3pkp) sin knz 
n=Ok=l 4 3  

X (( [n/R] IAk- k d n k )  COS n8 - ([n/R] I n k  -k knIAk) Sin no>. (3.41) 

It is interesting to note how Ink and Ikk enter into the expressions for v“ and i-5 
and that a 8-symmetry in the injection velocity I does not entail an analogous 
symmetry of B and 6. 

The boundary-value problem for the interior flow is solved next. Using the 
method of separation of variables, the solution of (3.17) can be written as 

m 
Po(r, 8)  = C (r/R)n [ A ,  cos n8 + B, sin ne] + const. (3.42) 

n=l  

Using the boundary condition (3.7) written in terms of Po, viz. 

we can determine the values of the An’s and Bn’s. Expanding 9(8) in Fourier 
series : m 

3(8) = (4cosn8+9;sinn8),t 
n=l 

we deduce that 

[YA cos 128 - -Ea, sin no]. 
n=l n 

r2r 

(3.43) 

(3.44) 

t The summation index n runs from 1 to  infinity since 9 ( B ) d B  = 0. Jo 
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The interior flow is driven by the vertical average of the injection velocity I@, 8). 
As a result of the smearing out of the z-dependence, a point source acts like a 
vertical line source in so far as the interior fields are concerned. 

Finally, using (3.8) we can determine A(0) and thus complete the determina- 
tion of the Ef layer fields: 

(3.45) 

where V, has been written in terms of Po. 
The boundary condition (3.1) for the radial velocity is satisfied to O(E*).  

Physically, this is due to the fact that the Ea layer is divergent and the radial 
mass flux in and out of this layer induces a secondary interior circulation of order 
Ef,  viz. (V4, p4)  which can be shown to be two-dimensional and irrotational. The 
boundary condition (3.3) for the vertical velocity is also satisfied to  O(Ei),  ;iij 
being different from zero at the wall. Both because W is a function of z and because 
W, is identically zero, we should introduce a correction to iZ to that order. Pro- 
ceeding in this manner, we could derive appropriate boundary-value problems 
for the various terms in a formal E A  expansion. We shall however not pursue 
these calculations, which are not very instructive. 

4. Discussion 
We have seen that when fluid is injected along the vertical wall of a straight 

cylinder of circular cross-section, a vertical shear layer of thickness Efr, in which 
the vertical transport occurs, is set up along this wall. The pressure gradient thus 
induced forces an azimuthal flow of E-9. However, the z-average of this zonal 
flow is zero and therefore there is no net horizontal transport via this boundary 
layer. Rather, the horizontal transport occurs via the interior of the fluid in 
which the flow is identical to the potential flow due to the z-average of the source- 
sink distribution $(@) in the case in which the system fluid-cylinder is not 
rotating. Finally, we have seen that the Ekman layers, which are non-divergent, 
turned out to play a passive role in the transport process. 

The derivation of the above-mentioned results rests on certain properties of 
both the interior and the side wall boundary layer fields which are quite general, 
and it is clear that the same conclusions hold for a straight cylinder of arbitrary 
cross-section (which is simply connected). 

At first sight the fact that the horizontal transport takes place via the interior 
is rather baffling and seems difficult to reconcile with some markedly different 
results obtained by Hide (1967), Lewellen (1965) and others who also considered 
flows induced by sources and sinks in rotating fluids. Lewellen found that, when 
fluid is uniformly injected through a porous cylinder and withdrawn from a 
second concentric porous cylinder, the radial transport takes place by means of 
the Ekman layers. This was also the case for the flow due to a vertical line source 
and a vertical line sink inside a cylinder which Hide has considered. This apparent 
contradiction can be understood by invoking a theorem derived by Taylor (1917) 
which points out the analogy between potential flows ' due ' to a moving body and 
the corresponding flows when the system fluid-boundary is rotating. Roughly 
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speaking, this theorem states that the streamfunction for an irrotational flow 
(with respect to a rotating frame) is identical to that of the corresponding flow 
for which the system fluid-boundary is a t  rest, provided that the latter stream- 
function can be looked upon as a pressure field. We have already seen that, in a 
rotating fluid, the pressure is a streamfunction for the interior flow [see (3.13)] 
and that, whenever the top and bottom Ekman layers are non-divergent, this 
pressure field is a harmonic function [see (3.17)]. When can we pursue the analogy 
with potential flows further and say that the proper boundary conditions for this 
streamfunction are: 

where s is the co-ordinate along the Ah boundary re and Yf the injection velo- 
city? Whenever (4.1) turns out to be the proper boundary condition, the 
interior flows will be identical (when viewed within a frame fixed with respect to 
the boundary) whether or not the system fluid-boundary is rotating. Since there 
can be no ‘sources’ and ‘sinks’ of pressure, $dP must always vanish, and it is 
clear that (4.1) cannot be a meaningful boundary condition unless 

aP/as = -2J$(s) on rf, (4.1) 

This condition is violated in the problems considered by Hide and Lewellen. In  
fact, since P is a streamfunction for the interior motion, and since 

is also zero for a curve I’ which encloses a source, we immediately conclude that 
there can be no transport from a ‘monopole’ source (or sink) via the interior, 
and as a result a streamline must wind around a source rather than issue from 
it. The horizontal transport from a monopole source to a monopole sink must 
take place through regions where the flow is rotational and/or not two-dimen- 
sional, such as Ekman layers. In  the present problem, the condition (4.2) is 
satisfied [see (2.9)], and therefore the horizontal transport can and indeed does 
occur via the interior. 

If we generalize the present problem by relaxing the requirement that there 
can be no net flux across a vertical boundary,-t the horizontal transport will 
occur partly via the interior and partly via the Ekman layers. This citn be seen 
by breaking up the injection velocity .lf(z, s) along the t th boundary as follows: 

where (4.4) 

i.e. the monopole component of the distribution If, and 

t The cross-section of the cylindrical container must consequently be multiply 
connected. 
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The horizontal transport due to the f<’s takes place by means of the Ekman 
layers whereas that due to the 4 ’ s  occurs through the interior. 

A simple experiment was performed in an attempt to visualize both the interior 
and Ekman layer flows. The apparatus is shown in figure 1, plate 1 and consists of 
a straight circular cylinder with two holes on the vertical side wall through which 
fluid is injected and withdrawn. The flow rate and angular rotation were such 
that both the Rossby and Ekman numbers were of the order of for all the 
experiments, thus ensuring thevalidity of both the linearization and the boundary 
layer approximation. The experiments were not entirely reliable because of 
extraneous oscillations in the flow due to the slow dripping of the fluid through 
the exhaust pipe and because the pipe at the centre of the upper surface acted as 
an additional weak source. However, in spite of these inadequacies, dye intro- 
duced a t  the top of the cylinder clearly showed the existence of interior motions 
in the direction of the sink (see, figure 2, plate 2). Furthermore, drops of dye which 
touched the bottom and entered the Ekman layer failed to indicate the existence 
of large velocities which should have been observed if the transport was taking 
place via the Ekman layer. 

I am grateful to Prof. R. Hide for letting me use the facilities of his laboratory 
and for several valuable discussions in connexion with the horizontal transport. 
This work was supported by the National Science Foundation under contract 
no. GP 4321. 
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FIGURE I. Picture of the apparatus. An arbitrary distribution of sources and sinks can be 
thought of as being mado up by pairs of point sources and sinks of equal strength. 

VICTOR BARCILON (R’a.cilzg p .  560) 
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F~GIJRE 2. Dye injected a t  the centrr of tho cylinder has moved toward the sink, thus 
tiisplaying the existmcc of' interior motions with source-sink streamlines. 
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